Égitestek domborzatmodelljeinek morfometriai szegmentálása multi-klaszterezéssel

Vitai Ákos

Földtudományi alapszak III. évfolyam Geofizikus specializáció

Témavezető: Dr. Székely Balázs egyetemi docens

Ma'adim Vallis: ESH-WSh27_kms23

Motiváció

- Korábban bemutatott ötlet (2021) megvalósítása
- Űrkutatás előrelendülése → nagy mennyiségű feldolgozatlan adat
 - → kell egy módszer mellyel nagy adatmennyiségeket gyorsan és hatékonyan fel lehet dolgozni

2023.12.07

Podobnikar & Székely(2015)

Célok:

- 1. Domborzatmodellek morfometriai jellegei szerinti klasszifikáció
- 2. Multi-klaszterezés módszertani kidolgozása és feldolgozó szoftver készítése
- 3. Legkülönbözőbb égitesteken és területeken való tesztelés

ESH-kms_20

Nevezéktan

E	Magasság	
S	Lejtőszög	
С	Görbület	
Н	Homogenitás	
Ge	Geomorfon	
WSh	Watershed	
kms	K-means	

Felhasznált adat: HRSC Felbontás: 50 m/pixel

Eredmények: Mars

Klaszterek

Eredmények: Föld

Stepinski et al. (2006) nyomán

ESH-kms_10

2023.12.07

Klaszterek

6.

5.

4.

3.

2.

Eredmények: Vénusz

Artemis Chasma

Majority filter

ESH-kms_7_mf

Felhasznált adat: MGN-DEM Felbontás: 4641 m/pixel

1200 km

Konklúzió

- A multi-klaszterezés minden vizsgált égitest esetén megfelelően elszeparálta a különböző domborzati jellegeket.
- A geomorfonok beágyazása a multi-klaszterezésbe speciális feladat esetén hasznos.
- Az ESH (elevation, slope, homogeneity) adathármas bizonyul a leghatékonyabbnak általánosan.
- A homogenitás, watershed és görbülettel a jelleghatárokra érzékenyek. Ezek alkalmazása speciális feladatok esetén ajánlott.
- Az alap adatok szűrésével opcionálisan csökkenthető a mikrodomborzati zajok hatása.

Égitestek	Feldolgozott területek (db)
Mars	116
Föld	15
Hold	18
Merkúr	12
Vénusz	7
Összesítve	168

2023.12.07

Kitekintés

További tervek:

- Geomorfonok teljeskörű beágyazása ٠
- Különböző adatkészletek további tesztelése ٠
- Földi eredmények összevetése geológiai interpretációkkal ٠
- Csurjumov-Geraszimenko üstökös domborzati elemzése ٠

Preusker et al. (2015)

Köszönöm a figyelmet!

vakosv829@gmail.com

bokos@student.elte.hu

2023.12.07

Irodalomjegyzék

- Copernicus Land Monitoring Service (2023): European Digital Elevation Model (EU-DEM) v1.1 https://land.copernicus.eu/imagery-in-situ/eu-dem/
- ESA. Planetary Science Archive (2022): MEX-M-HRSC-5-REFDR-MAPPROJECTED (HRSC) v1.0 https://archives.esac.esa.int/psa/ftp/MARS-EXPRESS/HRSC/
- F. Jing, M. Li, H. Zhang, and B. Zhang, 2003. Unsupervised image segmentation using local homogeneity analysis. In IEEE International Symposium on Circuits and Systems (2) 459. <u>10.1109/ISCAS.2003.1206008</u>
- GIS ESS, e.n. <u>http://gis.ess.washington.edu/uwmola/download/index.html</u> (hozzáférés: 2020. december 13.)
- Ghosh, S., Stepinski, T.F. and Vilalta, R. (2010). Automatic Annotation of Planetary Surfaces With Geomorphic Labels. 48(1), pp.175–185. <u>10.1109/TGRS.2009.2027113</u>
- Heipke, C., Oberst, J., Albertz, J., Attwenger, M., Dorninger, P., Dorrer, E., Ewe, M., Gehrke, S., Gwinner, K., Hirschmüller, H., Kim, J.R., Kirk, R.L., Mayer, H., Muller, J.-P., Rengarajan, R., Rentsch, M., Schmidt, R., Scholten, F., Shan, J., Spiegel, M., Wählisch, M., Neukum, G., HRSC Co-Investigator, Team, 2007. Evaluating planetary digital terrain models—the HRSC DTM test. Planet. Space Sci. 55, 2173–2191.
- Jasiewicz, J., Stepinski, T.F. Geomorphons A pattern recognition approach to classification and mapping of landforms. Geomorphology 2013, 182, 147–156. https://doi.org/10.1016/j.geomorph.2012.11.005
- Jaumann, R., Neukum, G., Behnke, T., Flohrer, J., van Gasselt, S., Giese, B., Gwinner, K., Hauber, E., Hoffmann, H., Köhler, U., Matz, K.-D., Mertens, V., Pischel, R., Roatsch, T., Reiss, D., Scholten, F., Stephan, K., Oberst, J., Saiger, P., Schwarz, G., Wählisch, M., 2007. The High Resolution Stereo Camera (HRSC) experiment on Mars Express: instrument aspects from interplanetary cruise through nominal mission. Planet. Space Sci. 55, 928–952.
- NASA PDS, 2022 <u>https://pds-geosciences.wustl.edu/messenger/mess-e_v_h-mla-3_4-cdr_rdr-data-v2/messmla_2101/</u>

NASA PDS, 2023 https://pds-geosciences.wustl.edu/mgn/mgn-v-gxdr-v1/mg_3002/gtdr/sinus/

- NASA
 PDS,
 2021
 https://pds-geosciences.wustl.edu/lro/lro-l-lola-3-rdr

 v1/lrolol_1xxx/data/sldem2015/
- Preusker, F., et al., 2015. Shape model, reference system definition, and cartographic mapping standards for Comet 67P/Churyumov-Gerasimenko – Stereo photogrammetric analysis of Rosetta/OSIRIS image data. Astron. Astrophys. 583, A33
- Pondrelli, M. et.al (2005). Complex evolution of paleolacustrine systems on Mars: An example from the Holden crater. *Journal of Geophysical Research*, vol. 110 (E04016). <u>10.1029/2004JE002335</u>
- Podobnikar, Tomaž and Székely, Balázs (2015). Towards the automated geomorphometric extraction of talus slopes in Martian landscapes. Planetary and Space Science 105 (2015) 148–158. <u>https://doi.org/10.1016/j.pss.2014.11.019.</u>
- Stepinski, T.F., Ghosh, S., Vilalta, R., 2006. Automatic recognition of landforms on Mars using terrain segmentation and classification. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4265 LNAI, pp. 255–266. 10.1007/11893318_2652
- Szilágyi-Sándor, A. (2022): A marsi Nirgal Vallis tektonikus fejlődésének vizsgálata. Országos Tudományos Diákköri dolgozat, Budapest.
- Vörös, Fanni, Székely, Balázs (2022). High-resolution DTM-based estimation of geomorphometric parameters of selected putative martian scoria cones. In Icarus 377, pp.114923–114923. https://doi.org/10.1016/j.icarus.2022.114923
- Vörös, F., Pál, M., Wyk, B., Székely, B., 2021. Development of a New Type of Geodiversity System for the Scoria Cones of the Chaîne des Puys Based on Geomorphometric Studies. Geosciences 11(2), 58. <u>https://doi.org/10.3390/geosciences11020058</u>
- Zheng, J., Gao, Y., Zhang, H., Lei, Y. and Zhang, J. (2022). OTSU Multi-Threshold Image Segmentation Based on Improved Particle Swarm Algorithm. Applied Sciences, 12(22), p.11514. https://doi.org/10.3390/app122211514.

Zhou, Q., Liu, X. (2004). Analysis of errors of derived slope and aspect related to DEM data properties. Computers & Geosciences, 30(4), pp.369–378. https://doi.org/10.1016/j.cageo.2003.07.005

Kiemelt földi eredményeim (1)

Kiemelt földi eredményeim (2)

4970000 4975000 4980000 4985000 4990000 4995000

Kiemelt földi eredményeim (3)

Keleti-Alpok, Medvednica

Homogenitás

<u>Görbület</u>

Érzékeny a hirtelen

jellegváltozásokra

Homogenitás

Érzékeny a hirtelen jellegváltozásokra

Érzéketlen a szimmetriákra Érzékeny a szimmetriákra

Lokális (3x3 ablak) adat Több skálán is működik

 $\mathbf{H} = \left\| \sum_{i=1}^{(2N+1)^2} \left\{ \left[I_p(x_i, y_i) - I_c(x_c, y_c) \right] \cdot \frac{(x_i - x_c, y_i - y_c)}{\|(x_i - x_c, y_i - y_c)\|} \right\} \right\|$

Geomorfon

Geomorfonok	Darabszám
Flat	15
Ridge	31
Shoulder	63
Spur	50
Slope	193
Hollow	50
Footslope	63
Valley	31
Összesítve:	496

Stepinski et al. (2006)

Watershed szegmentáció

WSh35

Multi-Otsu szegmentáció

- Geometriai jellegektől függetlenül, kizárólag pixelértékek alapján statisztikai úton szegmentálja a képet
- Otsu: Ketté osztja a képet (nem térbelileg) az adatok alapján és úgy alakítja a klasztereket, hogy a két szegmens szórása minimális legyen

Multi-Otsu eredmény

K-means

Klaszterhatárok illeszkedése

