A kvarc-coesite átalakulás nyírózónákban: 2D numerikus modellezés termodinamikai adatok felhasználásával

Koszta Benedek

Földtudományi BSc III. évfolyam Elérhetőség: kosztabeni4@student.elte.hu Témavezető: Porkoláb Kristóf, Phd HUN-REN Földfizikai és Űrtudományi Kutatóintézet

ELTE

Egyetemi Kutatói Ösztöndíj Program

Geofizikus TDK 2024 Budapest, 2024. december 09.

A KULTURÁLIS ÉS INNOVÁCIÓS MINISZTÉRIUM EKÖP-24 KÓDSZÁMÚ EGYETEMI KIVÁLÓSÁGI ÖSZTÖNDÍJ PROGRAMJÁNAK A NEMZETI KUTATÁSI, FEJLESZTÉSI ÉS INNOVÁCIÓS ALAPBÓL FINANSZÍROZOTT SZAKMAI TÁMOGATÁSÁVAL KÉSZÜLT.

Eredmények

♦ ♦ Øsszefoglalás

Diszkusszió

Deformáció és a metamorfózis kapcsolata a nyírózónákban

Szubdukciós zónák képlékenyen deformálódó részei

Dinamikus (tektonikus) és a litosztatikus nyomás

Metamorf kőzetek meghatározása a nyomás alapján

Szerkezetfejlődési következtetések lehetséges hibái

1. ábra: A szubdukciós zónák sematikus ábrázolása (Porkoláb, 2021 módosítva).

Eredmények

Diszkusszió >> Összefoglalás

Deformáció és a metamorfózis kapcsolata a nyírózónákban

Szubdukciós zónák képlékenyen deformálódó részei

Dinamikus (tektonikus) és a litosztatikus nyomás

Metamorf kőzetek meghatározása a nyomás alapján

Szerkezetfejlődési következtetések lehetséges hibái

Cél: Csatolt modellek felépítése a kémiai átalakulás és a deformáció között

1. ábra: A szubdukciós zónák sematikus ábrázolása (Porkoláb, 2021 módosítva).

Adatok és módszerek

Eredmények >> I

Diszkusszió 📏 Össz

Összefoglalás

A kvarc-coesite átalakulás

Szilárd fázisú ásványtani átmenet ← metamorfózis

Coesite: az UHP kőzetek indexásványa

Laboratóriumi kísérletek az átalakulásra

A dinamikus nyomás és a maximális főfeszültség szerepe

 ábra: A SiO2 P-T fázisdiagramja (Holland és Powell, 1998; Conolly, 2005, 2009).

A matematikai modell

$$\frac{\partial \ln \rho}{\partial t} + div \, \boldsymbol{v} = 0 \qquad \text{Kontinuitási egyenlet}$$

$$-grad p + div \tau = 0$$
 Stokes-egyenlet

Newtoni viszkózus reológia

 $\beta \frac{\partial p}{\partial t} = \frac{1}{\rho} \frac{\partial \rho}{\partial t}$

 $\tau = 2\eta \dot{\varepsilon}$

Kompresszibilitás izoterm esetben

Jel	Név		
ρ	sűrűség		
v	áramlási sebesség		
t	idő		
р	nyomás		
τ	deviatórikus		
	feszültségtenzor		
÷	sebességdeformációs		
	tenzor		
η	dinamikus viszkozitás		
β	kompresszibilitás		

1. táblázat: A matematikai modellben használt fizikai mennyiségek.

>Összefoglalás

A numerikus megoldás

Véges differenciák módszerének segítségével

Adatok és módszerek

A közelítés:

$$\frac{df(x)}{dx} \approx \frac{f(x+\delta x) - f(x)}{\delta x}$$

Saját fejlesztésű kód Matlab környezetben

Diszkusszió

3. ábra: A lépcsőzetes rácsháló a véges differenciás modellezésnél (Halter et al., 2022 módosítva).

Koszta Benedek: A kvarc-coesite átalakulás numerikus modellezése

Eredmények

Eredmények

Diszkusszió >>Ös

A modellgeometria és a határfeltételek

200*200-as felbontású 10 cm*10 cm-es négyzetes modelltartomány

Kezdeti viszkozitás reológiai összefüggésekből

Tiszta nyírásos deformációs zóna

Kör alakú kezdeti viszkozitás-anomália

4. ábra: A modell geometriája és kezdeti- és határfeltételei.

 $10^{-12} \frac{1}{s}$ -os deformációs sebesség

Eredmények

Termodinamikai adatok

Izoterm közelítés (T=773 K)

A Perple_X szoftverből kiexportálható a sűrűség-nyomás összefüggés

Az átalakulás kb. 200 kg/m³ sűrűségnövekedéssel jár

Diszkusszió

5. ábra: A kvarc-coesite átalakulás során létrejövő sűrűségváltozás T=773 K-en (Holland és Powell, 1998; Conolly, 2005, 2009).

Adatok és módszerek

Eredmények

Diszkusszió

Összefoglalás

A referenciamodell eredményei

Nyomásárnyékos és túlnyomásos zónák megjelenése

Lokalizálódik az átalakulás

6. ábra: A referenciamodell időbeli fejlődése. Minden mértékegység SI-ben van megadva (színskála: Crameri, 2018).

Eredmények

Diszkusszió

A referenciamodell eredményei

7. ábra: A referenciamodell eredményei 3000 év után. Minden mértékegység SI-ben van megadva (színskála: Crameri, 2018).

Eredmények

Diszkusszió

A referenciamodell eredményei

"nyomás késés" jelensége

Látens mechanikai energia a reakció során

8. ábra: A maximális nyomás és a sűrűség változása az időben az alapmodell esetén.

Diszkusszió

A referenciamodell eredményei

Coesite mennyisége időben exponenciális függvényre illeszkedik

Idővel egyensúly áll be

9. ábra: A coesite arányának változása a modellben.

Paramétertesztek

- Felbontásteszt → modell verifikációja Toleranciateszt Deformációs sebesség teszt: 10⁻¹⁰- 10⁻¹⁴ 1/s közötti értékekre
- Reakció végbemenetelének időskálája

Deformációs	A reakció	Elért maximális	
sebesség [1/s]	létrejöttéhez	sűrűség [kg/m ³]	
	szükséges idő [év]		
10-10	8,34	2976	
10 ⁻¹¹	93,1	2973	
10-12	1 130	2971,8	
10-13	142 000	2971,3	
10-14	Nincs reakció	2763,5	

2. táblázat: A reakció létrejöttéhez szükséges idő és az elért maximális sűrűség a különböző deformációs sebességek esetében.

Eredmények

Diszkusszió

A modell megbízhatósága

10. ábra: A modell összehasonlítása összenyomhatatlan esetekre készült analitikus (balra) és numerikus (jobbra) tanulmányokkal (Schmalholz et al., 2014, Halter et al., 2022). Mindkét tanulmányban a relatív nyomás van ábrázolva, míg az általam modellezett esetben a nyomás (Pa-ban).

A fázisátalakulás mechanizmusa és időskálája

		Deformációs sebesség	10 ⁻¹² 1/s	10 ⁻¹³ 1/s
Passzív betemetődés	Deformáció	Átalakuláshoz szükséges idő	1130 év	143 000 év
Litosztatikus nyomás	Dinamikus nyomás	Differenciális nyomásnövekedés	≈21 MPa	≈19 MPa
Reakció beindulása		Litosztatikus nyomásnövekedés	≈0,5 MPa	≈50 MPa
		Fő mechanizmus	Deformáció	Betemetődés

3. táblázat: A fázisátalakulás időskálájának és a mechanizmusának kapcsolata egy átlagos szubdukciós zóna esetén.

Eredmények

Diszkusszió

Az átalakulás reológiai szerepe

Coesite-ben gazdag kőzettestek exhumációja következhet be A kvarc-coesite átalakulás lehetséges szerepe a szubdukciós zónák fejlődésében

Eredmények

Diszkusszió

Az átalakulás reológiai szerepe

A fő nyírózóna mélyebb rétegekbe kerülhet

Coesite-ben gazdag kőzettestek exhumációja következhet be A kvarc-coesite átalakulás lehetséges szerepe a szubdukciós zónák fejlődésében

Továbbfejlesztési lehetőség: A reológiai visszacsatolások beépítése a modellbe.

Diszkusszió

Összefoglalás

A deformáció és a metamorfózis kapcsolatának kvantitatív elemzése

Összenyomható Stokes-egyenletrendszert megoldó numerikus modell a kvarc-coesite átalakulásra

Az átalakulást létrehozó mechanizmusok időskálája: passzív betemetődés / deformáció

Az átalakulás lehetséges reológiai szerepe

Diszkusszió

Köszönöm a figyelmet!

- A deformáció és a metamorfózis kapcsolatának kvantitatív elemzése
- Összenyomható Stokes-egyenletrendszert megoldó numerikus modell a kvarc-coesite átalakulásra
- Az átalakulást létrehozó mechanizmusok időskálája: passzív betemetődés / deformáció

Az átalakulás lehetséges reológiai szerepe

Források:

Connolly, J. A. D. (2005): <u>Computation of phase equilibria by linear programming</u>: A tool for geodynamic modeling and its <u>application to subduction zone decarbonation</u>. Earth and Planetary Science Letters 236, 524.

Connolly, J. A. D. (2009): <u>The geodynamic equation of state: what and how</u>. Geochemistry, Geophysics, Geosystems 10, 10. Crameri, F. (2018)a: Geodynamic diagnostics, scientific visualisation and StagLab 3.0, Geoscientific Model Development 11, 2541.

Crameri, F. (2018)b: Scientific colour maps. Zenodo

Halter, W. R.; Macherel, E.; Schmalholz; S. M. (2022): A simple computer program for calculating stress and strain rate in 2D viscous inclusion-matrix systems. Journal of Structural Geology, 160, 104617.

Holland, T. J. B.; Powell, R. (1998): An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology. 16, 309.

Moulas, E.; Burg, J. P.; Podladchikov, Y. (2014): Stress field associated with elliptical inclusions in a deforming matrix: Mathematical model and implications for tectonic overpressure in the lithosphere. Tectonophysics, 631, 37.

Porkoláb, K. (2021): Burial-exhumation cycles in the continental crust derived from Mediterranean field studies and numerical modelling, Phd thesis, Utrecht University